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Multi-resolution particle methods
for fluid analysis and their applications in engineering
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Development of cohesive zone-based algorithms for impact failure of
laminated glass structures

Laminated glass structures that are comprised of several
glass layers bonded by plastic interlayers have found widespread
applications in various engineering fields, e.g., automotive,
architectural, and marine industries. Such structures are
normally regarded as safety components, as the structures can
absorb some impact energies and keep most of the glass shards
adhered to the plastic interlayers for impact contact scenarios.
Increasingly, numerical simulations have been advocated as a
main approach for impact failure analyses of laminated glass.
However, the impact failure phenomena of laminated glass are
quite complicated and normally involve glass fracture,
glass/interlayer debonding, and non-smooth contact interactions
between cracks, thereby posing significant challenges for
numerical simulations. To date, various numerical algorithms,
e.g., the element deletion method, the combined discrete/finite
element method, the extended finite element method, and the
peridynamic method, have been developed and adopted for the
application of interest. In this regard, the author and his co-
workers have developed novel cohesive zone-based algorithms
to accurately reproduce the progressive impact failure behavior
of laminated glass. The main research works have been
published on Computer Methods in Applied Mechanics and
Engineering (2015, 294: 72-99), Composite Structures (2016,
138: 1-11; 2019, 229: 111406; 2021, 256: 113112), Computers
& Structures (2019, 215: 80-97), Composites Part B:
Engineering (2017, 122: 47-60), International Journal of Impact

Engineering (2019, 126: 147-159; 2020, 141: 103577; 2020, 141:

103564; 2022, 163: 104187), and International Journal of
Computational Methods (2018, 15(08): 1850077), and the
achievements can be summarized as follows.

Firstly, a series of novel cohesive zone models that can
provide an efficient and effective way to model challenging
crack behaviors have been developed to describe the two main
failure patterns, i.ec., glass fracture and glass/interlayer
debonding, of laminated glass subjected to impact loadings. In
our works, considering the structural characteristic of laminated
glass plates, we started by developing intrinsic and extrinsic
models in conjunction with solid-shell and shell elements for
glass cracking. As for the debonding, we developed facet- and
nodal-based intrinsic models that could effectively deal with the
debonding between material layers (e.g., glass and interlayer)
with large modulus mismatch, which allowed the use of non-
matching cohesive elements. In order to address the artificial
compliance issue, a nodal-based Lagrange multiplier/cohesive
zone model was developed, where the continuities across
material interfaces were effectively enforced via Lagrange
multipliers at finite element nodes before the onset of interfacial
cracking. In addition, a nodal-based extrinsic model was
proposed, and numerical results showed that the novel model
was computationally more efficient than traditional intrinsic
models. Another novelty of this model is that it can effectively
address the time continuity problem arising in conventional
extrinsic models. Some of the results are shown in Figure 1.
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(a) Brittle cracking of a hemispherical shell
structure using an intrinsic cohesive zone model

(b) Delamination of a multi-layered structure using a
Lagrangian multiplier/cohesive zone model

Figure 1: Brittle cracking and delamination simulations.

Secondly, contact algorithms have been developed in the
context of cohesive crack modeling. In view of the adaptive
insertion of extrinsic cohesive elements, an efficient global
contact search algorithm including a regular search and an
adaptive search was developed. As the contact interactions
between cracks and fragments are typically non-smooth and
multiple collisions among glass fragments are involved, the
traditional segment-based contact algorithms are not sufficient.
A robust local search algorithm was therefore developed, which
facilitated the judgements of node—face and edge—edge contacts
with a unified inside—outside approach. In the context of
extrinsic cohesive modeling, an unphysical phenomenon called
contact force jump may happen with the classical node-to-
segment contact treatment, and thus mortar-based contact
algorithms have been developed. In addition, contact algorithms
were coupled with cohesive elements to achieve a smooth
transition from cohesive cracking to pure contact sliding.

Thirdly, the impact failure behaviors of laminated glass
have been thoroughly investigated via the developed cohesive
zone-based numerical algorithms. We established high-fidelity
finite element models for laminated glass, where glass/interlayer
bonding was described via cohesive zone models as well. Our
simulation results were found in good agreement with
corresponding experimental data in terms of failure patterns and
impact force histories. The propagations of stress waves of the
laminated glass during the crack process were numerically
illustrated, and the glass-ply cracking mechanism was revealed.
The effects of interlayer film, the adhesion, impact velocity, and
impact angle on impact failure behavior and energy absorption
of laminated glass have been numerically investigated. Some of
the results are shown in Figure 2. The numerical conclusions can
be useful for the structural design of laminated glass structures.
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(a) Results via an
intrinsic cohesive model

(b) Experimental
results

(c) Results via element
deletion method

Figure 2: Comparisons of numerical and experimental results
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